1. Find the pH of 0.1 M HClO₄

This is a strong acid, so $[H^+] = 0.1$ M. pH= $-\log(0.1) = 1$

2. Find the pH of 0.1 M Ca(OH)₂

This is a strong base, and there are two OH's for every $Ca(OH)_2$, so $[OH^-] = 0.2 \text{ M}$ pOH = -log(0.2) = 0.699pH = 14 - .699 = 13.3

3. Find the pH and % ionization of 0.1 M HNO₂, $K_a = 4.5 \times 10^{-4}$

K_a is too big to use
$$[H^+] = \sqrt{K_a C}$$

So use $[H^+] = \frac{-K_a + \sqrt{K_a^2 + 4K_a C}}{2}$
 $[H^+] = \frac{-4.5 \times 10^{-4} + \sqrt{(4.5 \times 10^{-4})^2 + 4(4.5 \times 10^{-4})(0.1)}}{2} = 0.00649 \text{ M}$
pH = -log(0.00649) = 2.19
% ionization = (0.00694/0.1)x100 = 6.49%

4. Find the pH and % ionization of 0.1 M NH₃, $K_b = 1.8 \times 10^{-5}$

 K_b is small enough to use $[OH^-] = \sqrt{K_b C}$

 $[OH^{-}] = \sqrt{(1.8 \times 10^{-5})(0.1)} = 0.00134 \text{ M}$ pOH = -log(0.00134) = 2.87 pH = 14 - 2.87 = 11.13 % ionization = (0.00134/0.1)x100 = 1.34%

5. Find the pH and % hydrolysis of 0.1 M NaNO₂

 Na^+ is the salt of a strong base (NaOH) and NO_2^- is the salt of a weak acid (HNO₂).

Therefore this salt will make the solution basic.

Use the K_a of HNO₂ and switch it to a K_b .

 $K_{b} = 1 \times 10^{-14} / 4.5 \times 10^{-4} = 2.2 \times 10^{-11}$ $[OH^{-}] = \sqrt{K_{b}C}$ $[OH^{-}] = \sqrt{(2.2 \times 10^{-11})(0.1)} = 1.48 \times 10^{-6} \text{ M}$ $pOH = -\log(1.48 \times 10^{-6}) = 5.82$ pH = 14-5.82 = 8.18% hydrolysis = (1.48 \times 10^{-6} / 0.1) \times 100 = 0.00148\%

6. Find the pH and % hydrolysis of 0.1 M NH₄Cl

 NH_4^+ is the salt of a weak base (NH_4OH or NH_3) and Cl^- is the salt of a strong acid (HCl).

Therefore this salt will make the solution acidic.

Use the K_b of NH₃ and switch it to a K_a. $K_a = 1x10^{-14}/1.8x10^{-5} = 5.6x10^{-10}$ $[H^+] = \sqrt{K_aC}$ $[H^+] = \sqrt{(5.6 \times 10^{-10})(0.1)} = 7.48x10^{-6} M$ pH = -log(7.48x10⁻⁶) = 5.13 % hydrolysis = (7.48x10^{-6}/0.1)x100 = 0.00748%

Note: question 5 could have asked "Find the pH and % hydrolysis of 0.1 M NO_2^{-1} " and it would mean the exact same thing. Similarly, question 6 could just as easily have asked "Find the pH and % hydrolysis of 0.1 M NH_4^{+1} ".